Visual Transformers (ViT)

We dissect, visually, how a Visual Transformer works. We will consider the ViT Tiny architecture, that is, a
model composed by 12 layers each of them with 3 heads with embedding size of 192.

The model has been introduced in: https://arxiv.org/pdf/2012.12877.pdf and constitutes the "smallest" ViT
architecture available. We consider the input images to be 224x224 pixels, with 3 channels and patch size
of 16x16.
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(blocks): Sequential(
(@): Block(
(norm1): LayerNorm((192,), eps=1e-06, elementwise_affine=True)
(attn): Attention(
(gkv): Linear(in_features=192, out_features=576, bias=True)
(attn_drop): Dropout( 0, inplace=Fals
(proj): Linear(in_features=192, out_features=192, bias=True)
(proj_drop): Dropout(p=0.@, inplace=False)
)
(drop_path): Identity()
(norm2): LayerNorm((192,), eps=1e-06, elementwise_affine=True)
Mlp(
Linear(in_features=192, out_features=768, bias=True)
GELU( )
): Dropout(p=0.0, inplace=False)

(fc: ear(in_features=768, out_features=192, bias=True)
Norm (drop2): Dropout(p=0.0, inplace=False)

Linear
Embedder

)

Multi-Head
Attention

I

isionTransformer(
(patch_embed): PatchEmbed(

(proj): conv2d(3, 192, kernel_size=(16, 16), stride=(16, 16))
(norm): Identity()
)
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We split the linear embeddings in H
parts, where H is the number of
heads.
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After computing the self-attention for
each head we combine the results in Q‘
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The result is forwarded to an MLP
and then to the next layer.
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At the last layer the MLP Head will only consider the cls token
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