Visual Transformers (ViT)

by Francesco Pelosin

We dissect, visually, how a Visual Transformer works. We will consider the ViT Tiny architecture, that is, a model composed by 12 layers each of them with 3 heads with embedding size of 192.

The model has been introduced in: <u>https://arxiv.org/pdf/2012.12877.pdf</u> and constitutes the "smallest" ViT architecture available. We consider the input images to be 224x224 pixels, with 3 channels and patch size of 16x16.

This is the general overview of a ViT. Each image is splitted in patches and then goes through a Linear Embedder. Here, we add a positional encoding and we append an extra [class] token which is the fundamental vector that is then used in the MLP Head to perform the classification.

Linear Embedder

and then to the next layer.

At the last layer the MLP Head will only consider the cls token

